

Wednesday 2/12	Today's Tonic: Determining the convergence or divergence of alternating series
Weunesuay 2/12	Approximating error of the sum of an alternating series
Key Ideas:	
Alternating Series Tes	it (AST)
If $a_n > 0$, then the alter	mating series $\sum_{n=0}^{\infty} (-1)^n a_n$ or $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$ converges if both
of the following conditi	n=1 $n=1$ hons are satisfies:
1) $\lim_{n \to \infty} a_n = 0$	
2) $\{a_n\}$ is a decreasing	(or Non-increasing) sequence; that is, $a_{n+1} \le a_n$ for all
$n > k$, for some $k \in$	
Note: This does NOT say t	that if $\lim_{n \to \infty} a_n \neq 0$ the series DIVERGES by the AST. The AST can ONLY be
used to prove convergence	$n \to \infty^{n}$. If $\lim a_n \neq 0$, then the series diverges, but by the <i>n</i> th-term test NOT the AST.
1	n→∞
In-Class Examples:	Determine the convergence of divergence of each series.
1) $\sum (-1)^{n+1} \frac{n+3}{n(n+1)}$	2) $\sum (-1)^{n+1} \frac{1}{n}$ 3) $\sum \frac{(-1)^{k+1}}{2k+1}$ 4) $\sum \frac{\cos(n\pi)}{n}$
5) Estimate the sum if	the first 5 terms of $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ are used to estimate <i>S</i> . Find the error in the approximation.
6) Estimate the sum if	the first 5 terms of $\sum \frac{(-1)^{n-1}}{n!}$ are used to estimate <i>S</i> . Find the error in the approximation.
Homework: Workshe	pet 82
Thursday 2/13	divergent
Key Idea:	
If the series $\sum_{n=1}^{\infty} a_n $ conv	verges, then $\sum_{n=1}^{\infty} a_n$ also converges.
Such a series is called a l allows it to converge mo	bsolutely convergent . Notice that if it converges on its "own," the alternator only ore "rapidly".
$\sum_{n=1}^{\infty} a_n$ is conditionally of	convergent if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} a_n $ diverges.
In-Class Examples: I	Determine if a series is absolutely convergent, conditionally convergent, or divergent
1) $\sum (-1)^{n+1} \frac{1}{n^2}$	2) $\sum (-1)^{n+1} \frac{1}{n}$ 3) $\sum (-1)^{n+1} \frac{n}{5n+1}$ 4) $\sum (-1)^{n+1} \frac{n+4}{n^3}$
Homework: Worksho	eet 83

Friday 2/14	Today's Topic: Review for the test on series
In-Class Examples: None	
Homework: Worksheet 84	

Tuesday 2/18	Today's Topic: Review for Thursday's Test	
In-Class Examples: None		
Homework: Worksheet 85		

Wednesday 2/19	Today's Topic: Review for Thursday's Test	
In-Class Examples: None		
Homework: Worksheet 86		

Thursday 2/20	Today's Topic: Test on Convergence and Divergence
In-Class Examples: None	
Homework: None	